研究生课程开设申请表
开课院(系、所):信息科学与工程学院
课程申请开设类型: 新开☑ 重开□ 更名□(请在□内打勾,下同)
课程 名称 | 中文 | AI辅助的通信DSP算法与实现 | |||||||||||
英文 | AI-Aided Communication DSP Algorithms and Implementation | ||||||||||||
待分配课程编号 | DB004229 | 课程适用学位级别 | 博士 | 适用 | 硕士 | ||||||||
总学时 | 32 | 课内学时 | 32 | 学分 | 2 | 实践环节 | 0 | 用机小时 | 0 | ||||
课程类别 | □公共基础 □专业基础 □专业必修 ☑专业选修 | ||||||||||||
开课院(系) | 信息科学与工程学院 | 开课学期 | ☑秋季 □春季 | ||||||||||
考核方式 | A.□笔试(□开卷 □闭卷) B.□口试 C.□笔试与口试结合 D.√其他Project+课程论文 | ||||||||||||
课程负责人 | 教师 姓名 | 张川 | 职称 | 教授 | |||||||||
chzhang@seu.edu.cn | 网页地址 | //www.yourhotlips.com/2018/0423/c19937a213561/page.htm | |||||||||||
授课语言 | 英语 | 课件地址 | |||||||||||
适用学科范围 | 通信与信息系统,信号与信息处理,电路与系统 | 所属一级学科名称 | 0810信息通信与工程 | ||||||||||
实验(案例)个数 | 0 | 先修课程 | 计算机基础,通信原理 | ||||||||||
教学用书 | 教材名称 | 教材编者 | 出版社 | 出版年月 | 版次 | ||||||||
主要教材 | VLSI Digital Signal Processing Systems: Design and Implementation | K.K. Parhi | John Wiley & Sons | 1998年12月 | 1-1 | ||||||||
主要参考书 | VLSI数字信号处理系统:设计与实现 | 帕赫 | 机械工业出版社 | 2004年6月 | 1-1 | ||||||||
一、课程介绍(含教学目标、教学要求等)(300字以内)
本课程面向信息与通信工程专业研究生,系统介绍人工智能技术在通信DSP算法设计与实现中的应用。课程涵盖神经网络、遗传算法等智能优化方法在DSP系统中的建模、优化与硬件实现。教学目标包括:掌握AI辅助的DSP算法理论基础;具备利用智能算法解决信号处理实际问题的能力;培养跨学科融合的创新设计思维。教学要求学生具备数字信号处理、编程及数学基础,通过理论讲授与项目实践相结合的方式,完成算法仿真与硬件实现任务,提升工程研究与系统实现能力。
二、教学大纲(含章节目录):(可附页)
第一章:绪论(2学时)
1.1 AI赋能新一代DSP与VLSI设计概述
1.2 AI与DSP融合的发展趋势与典型应用场景
1.3系统架构与智能信号处理系统概述
1.4我国在AI-DSP芯片领域的发展现状与挑战
第二章:核心基础回顾与AI工具准备(2学时)
2.1数字信号处理(DSP)基础理论回顾
2.2人工智能基础概念与算法分类
2.3 MATLAB/Python工具链在DSP中的应用
2.4智能算法开发环境搭建与编程基础
第三章:基带信号处理算法回顾(2学时)
3.1传统DSP算法核心概念回顾
3.2信号检测与信道均衡基础
3.3编译码技术与信号恢复方法
3.4传统方法的局限与智能化需求
第四章:AI辅助通信I:智能信号检测与均衡(2学时)
4.1基于神经网络的信号检测算法
4.2智能信道均衡技术
4.3算法仿真与性能分析
4.4案例分析与实现
第五章:AI辅助通信II:智能信道编译码(2学时)
5.1深度学习在信道编译码中的应用
5.2智能编译码器设计与优化
5.3仿真验证与性能评估
5.4与传统方法的对比分析
第六章:AI辅助设计与优化I:智能演化算法(2学时)
6.1遗传算法基本原理
6.2演化策略在DSP硬件优化中的应用
6.3多目标优化与自动架构搜索
6.4案例研究:硬件资源与功耗优化
第七章:AI辅助设计与优化II:硬件电路的智能自动生成(2学时)
7.1智能硬件生成方法与工具概述
7.2基于机器学习的电路设计自动化
7.3生成模型在VLSI设计中的应用
7.4实现案例与性能分析
第八章:AI辅助设计与优化III:自动低比特量化与压缩(2学时)
8.1低比特量化技术概述
8.2智能量化算法设计与实现
8.3神经网络压缩与硬件加速
8.4实际系统中的应用与挑战
第九章:AI-DSP系统的实现架构I(2学时)
9.1 FPGA平台上的智能算法部署
9.2加速器设计与优化
9.3硬件资源管理与调度
9.4案例:实时信号处理系统实现
第十章:AI-DSP系统的实现架构II(2学时)
10.1 ASIC平台上的智能DSP核设计
10.2软硬件协同优化方法
10.3系统级集成与验证
10.4低功耗与高性能设计权衡
第十一章:AI辅助设计与优化IV:自动评估与性能预测(2学时)
11.1性能建模与预测方法
11.2智能算法在系统评估中的应用
11.3自动化测试与验证流程
11.4案例:端到端系统性能优化
第十二章:案例深度研究:端到端的AI通信基带设计(2学时)
12.1智能极化码编译码系统
12.2智能信道估计与自适应调制
12.3系统集成与协同优化
12.4仿真与硬件验证
第十三章:系统级协同优化与验证(2学时)
13.1多目标系统优化方法
13.2验证策略与测试平台构建
13.3实际工程中的挑战与解决方案
13.4案例分析与总结
第十四章:前沿专题I:自动寻找最优DSP硬件架构(2学时)
14.1自动硬件架构搜索技术
14.2强化学习在架构优化中的应用
14.3多模态优化与动态重构
14.4发展趋势与研究展望
第十五章:前沿专题II:极化码智能构造算法(2学时)
15.1极化码基本原理回顾
15.2智能构造与优化算法
15.3在5G/6G系统中的应用
15.4性能分析与未来方向
第十六章:课程总结与展望(2学时)
16.1课程内容回顾与知识体系梳理
16.2 AI-DSP技术发展趋势
16.3创新责任与工程伦理
16.4未来研究方向与学习建议
三、教学周历
周次 | 教学内容 | 教学方式 |
1 | 绪论:AI赋能新一代DSP与VLSI设计 | 讲课、讨论 |
2 | 核心基础回顾与AI工具准备 | 讲课、讨论 |
3 | 基带信号处理算法回顾 | 讲课、讨论 |
4 | AI辅助通信I:智能信号检测与均衡 | 讲课、讨论 |
5 | AI辅助通信II:智能信道编译码 | 讲课、讨论 |
6 | AI辅助设计与优化I:智能演化算法 | 讲课、讨论 |
7 | AI辅助设计与优化II:硬件电路的智能自动生成 | 讲课、讨论 |
8 | AI辅助设计与优化III:自动低比特量化与压缩 | 讲课、讨论 |
9 | AI-DSP系统的实现架构I | 讲课、讨论 |
10 | AI-DSP系统的实现架构II | 讲课、讨论 |
11 | AI辅助设计与优化IV:自动评估与性能预测 | 讲课、讨论 |
12 | 案例深度研究:端到端的AI通信基带设计 | 讲课、讨论 |
13 | 系统级协同优化与验证 | 讲课、讨论 |
14 | 前沿专题I:自动寻找最优DSP硬件架构 | 讲课、讨论 |
15 | 前沿专题II:极化码智能构造算法 | 讲课、讨论 |
16 | 课程总结与展望 | 讲课、讨论 |
注:1.以上一、二、三项内容将作为中文教学大纲,在研究生院中文网页上公布,四、五内容将保存在研究生院。2.开课学期为:春季、秋季或春秋季。3.授课语言为:汉语、英语或双语教学。4.适用学科范围为:公共,一级,二级,三级。5.实践环节为:实验、调研、研究报告等。6.教学方式为:讲课、讨论、实验等。7.学位课程考试必须是笔试。8.课件地址指在网络上已经有的课程课件地址。9.主讲教师简介主要为基本信息(出生年月、性别、学历学位、专业职称等)、研究方向、教学与科研成果,以100至500字为宜。
四、主讲教师简介:
张川: 教授、博士生导师,东南大学青年首席教授,紫金山实验室课题联合负责人,移动信息网络国家科技重大专项首席科学家。东南大学Lab of Efficient Architectures for Digital-communication and Signal-processing (LEADS)负责人。研究方向为面向AI通信算力需求的算法、芯片与工具链,包括:AI基带算法与芯片、基带芯片自动生成EDA系统、2D空时信道编译码、cell-free新型网络架构、强算力网络级AI芯片、通感智算无人系统、射频前端低比特自动量化等。
五、任课教师信息(包括主讲教师):
任课教师 | 学科(专业) | 办公电话 | 住宅电话 | 手机 | 电子邮件 | 通讯地址 | 邮政 编码 |
张川 | 通信与信息系统 | 无 | 无 | chzhang@seu.edu.cn | 南京市江宁区江宁无线谷B1楼 | 211100 | |
谈晓思 | 通信与信息系统 | 无 | 无 | tanxiaosi@seu.edu.cn | 南京市江宁区江宁无线谷B1楼 | 211100 | |
周华羿 | 通信与信息系统 | 无 | 无 | huayizhou@seu.edu.cn | 南京市江宁区江宁无线谷B1楼 | 211100 |
六、课程必要性说明
(包括不限于,对比已有课程的重复度?对已有课程的补充性?)
随着人工智能技术在信号处理领域的深度融合,传统DSP算法设计与实现方法正面临智能化转型的迫切需求。本课程《人工智能辅助的数字信号处理算法与实现》旨在填补现有课程体系中AI与DSP交叉领域的教学空白,具有明确的必要性和前瞻性。
与已有课程《面向数字信号处理系统的VLSI设计》相比,本课程不重复其以硬件架构优化和VLSI实现为核心的教学内容,而是聚焦于AI算法在DSP系统中的建模、优化与智能实现,强调算法层面的智能辅助与自动化设计。两门课程形成明显互补:前者注重硬件实现与架构变换,后者注重算法智能优化与系统级AI集成。
本课程的开设将有助于学生:
掌握AI辅助DSP算法的前沿理论与方法;
培养跨学科融合能力,适应AI+通信/信号处理的研究与工程需求;
提升在智能信号处理系统设计与实现方面的创新能力。
此外,本课程紧密结合当前科研与工业界对“AI+通信”“AI+芯片”等方向的人才需求,具有显著的时代性与实用性,是对现有课程体系的重要补充与升级。
七、课程开设审批意见
所在院(系)
审 批 意 见
负责人:
日 期:
所在学位评定分
委员会审批意见
分委员会主席:
日 期:
研究生院审批意见
负责人:
日 期:
注
说明:1.研究生课程重开、更名申请也采用此表。表格下载:http: /seugs.seu.edu.cn/down/1.asp
2.此表一式三份,交研究生院、院(系)和自留各一份,同时提交电子文档交研究生院。
Application Form For Opening Graduate Courses
School (Department/Institute):
Course Type: New Open☑ Reopen □ Rename □(Please tick in □, the same below)
Course Name | Chinese | AI辅助的通信DSP算法与实现 | |||||||||||
English | AI-Aided Communication DSP Algorithms and Implementation | ||||||||||||
Course Number | DB004229 | Type of Degree | Ph. D | ☑ | Master | ☑ | |||||||
Total Credit Hours | 32 | In Class Credit Hours | 32 | Credit | 2 | Practice | 0 | Computer-using Hours | 0 | ||||
Course Type | □Public Fundamental □Major Fundamental □Major Compulsory ☑Major Elective | ||||||||||||
School (Department) | School of Information Science and Engineering | Term | ☑Autumn | ||||||||||
Examination | A. □Paper(□Open-book □ Closed-book) B. □Oral C. □Paper-oral Combination D. □ Others Project+Essay | ||||||||||||
Chief Lecturer | Name | Chuan Zhang | Professional Title | Professor | |||||||||
chzhang@seu.edu.cn | Website | //www.yourhotlips.com/2018/0423/c19937a213561/page.htm | |||||||||||
Teaching Language used in Course | Bilingual teaching | Teaching Material Website | |||||||||||
Applicable Range of Discipline | Communication and Information Systems, Signal and Information Processing, Circuits and Systems | Name of First-Class Discipline | Information and Communication Engineering | ||||||||||
Number of Experiment | 0 | Preliminary Courses | Computer Fundamentals, Principles of Communications | ||||||||||
Teaching Books | Textbook Title | Author | Publisher | Year of Publication | Edition Number | ||||||||
Main Textbook | VLSI Digital Signal Processing Systems: Design and Implementation | K.K. Parhi | John Wiley & Sons | December 1998 | 1-1 | ||||||||
Main Reference Books | VLSI数字信号处理系统:设计与实现 | 帕赫 | 机械工业出版社 | June 2004 | 1-1 | ||||||||
Course Introduction (including teaching goals and requirements) within 300 words:
This course is designed for graduate students in Information and Communication Engineering, systematically introducing the application of artificial intelligence (AI) technologies in the design and implementation of digital signal processing (DSP) algorithms. It covers intelligent optimization methods such as neural networks and genetic algorithms in modeling, optimization, and hardware implementation of DSP systems. Teaching objectives include: mastering the theoretical foundations of AI-assisted DSP algorithms; developing the ability to use intelligent algorithms to solve practical signal processing problems; and fostering interdisciplinary innovative design thinking. Students are required to have a foundation in digital signal processing, programming, and mathematics. Through a combination of theoretical instruction and project practice, students will complete algorithm simulation and hardware implementation tasks to enhance their engineering research and system implementation capabilities.
Teaching Syllabus (including the content of chapters and sections. A sheet can be attached):
Chapter 1: Introduction (2 hours)
1.1 Overview of AI-Empowered New-Generation DSP and VLSI Design
1.2 Development Trends and Typical Applications of AI-DSP Integration
1.3 System Architecture and Intelligent Signal Processing Systems
1.4 Current Development and Challenges in AI-DSP Chips in China
Chapter 2: Core Fundamentals and AI Tool Preparation (2 hours)
2.1 Review of Digital Signal Processing Fundamentals
2.2 Basic Concepts and Algorithm Classification of AI
2.3 Application of MATLAB/Python Toolchain in DSP
2.4 Setup of Intelligent Algorithm Development Environment and Programming Basics
Chapter 3: Review of Baseband Signal Processing Algorithms (2 hours)
3.1 Core Concepts of Traditional DSP Algorithms
3.2 Signal Detection and Channel Equalization Basics
3.3 Coding/Decoding Techniques and Signal Recovery Methods
3.4 Limitations of Traditional Methods and the Need for Intelligence
Chapter 4: AI-Assisted Communication I: Intelligent Signal Detection and Equalization (2 hours)
4.1 Neural Network-Based Signal Detection Algorithms
4.2 Intelligent Channel Equalization Techniques
4.3 Algorithm Simulation and Performance Analysis
4.4 Case Study and Implementation
Chapter 5: AI-Assisted Communication II: Intelligent Channel Coding/Decoding (2 hours)
5.1 Application of Deep Learning in Channel Coding/Decoding
5.2 Design and Optimization of Intelligent Encoders/Decoders
5.3 Simulation Verification and Performance Evaluation
5.4 Comparative Analysis with Traditional Methods
Chapter 6: AI-Assisted Design and Optimization I: Intelligent Evolutionary Algorithms (2 hours)
6.1 Fundamentals of Genetic Algorithms
6.2 Application of Evolutionary Strategies in DSP Hardware Optimization
6.3 Multi-Objective Optimization and Automatic Architecture Search
6.4 Case Study: Hardware Resource and Power Consumption Optimization
Chapter 7: AI-Assisted Design and Optimization II: Intelligent Automatic Generation of Hardware Circuits (2 hours)
7.1 Overview of Intelligent Hardware Generation Methods and Tools
7.2 Machine Learning-Based Automated Circuit Design
7.3 Application of Generative Models in VLSI Design
7.4 Implementation Cases and Performance Analysis
Chapter 8: AI-Assisted Design and Optimization III: Automatic Low-Bit Quantization and Compression (2 hours)
8.1 Overview of Low-Bit Quantization Techniques
8.2 Design and Implementation of Intelligent Quantization Algorithms
8.3 Neural Network Compression and Hardware Acceleration
8.4 Applications and Challenges in Real Systems
Chapter 9: Implementation Architecture of AI-DSP Systems I (2 hours)
9.1 Deployment of Intelligent Algorithms on FPGA Platforms
9.2 Accelerator Design and Optimization
9.3 Hardware Resource Management and Scheduling
9.4 Case Study: Real-Time Signal Processing System Implementation
Chapter 10: Implementation Architecture of AI-DSP Systems II (2 hours)
10.1 Design of Intelligent DSP Cores on ASIC Platforms
10.2 Hardware-Software Co-Optimization Methods
10.3 System-Level Integration and Verification
10.4 Trade-offs Between Low Power and High Performance
Chapter 11: AI-Assisted Design and Optimization IV: Automatic Evaluation and Performance Prediction (2 hours)
11.1 Performance Modeling and Prediction Methods
11.2 Application of Intelligent Algorithms in System Evaluation
11.3 Automated Testing and Verification Processes
11.4 Case Study: End-to-End System Performance Optimization
Chapter 12: In-Depth Case Study: End-to-End AI Communication Baseband Design (2 hours)
12.1 Intelligent Polar Code Encoding/Decoding System
12.2 Intelligent Channel Estimation and Adaptive Modulation
12.3 System Integration and Co-Optimization
12.4 Simulation and Hardware Verification
Chapter 13: System-Level Co-Optimization and Verification (2 hours)
13.1 Multi-Objective System Optimization Methods
13.2 Verification Strategies and Test Platform Construction
13.3 Challenges and Solutions in Practical Engineering
13.4 Case Analysis and Summary
Chapter 14: Frontier Topics I: Automatic Search for Optimal DSP Hardware Architecture (2 hours)
14.1 Automatic Hardware Architecture Search Techniques
14.2 Application of Reinforcement Learning in Architecture Optimization
14.3 Multi-Modal Optimization and Dynamic Reconfiguration
14.4 Development Trends and Research Prospects
Chapter 15: Frontier Topics II: Intelligent Construction Algorithms for Polar Codes (2 hours)
15.1 Review of Polar Code Fundamentals
15.2 Intelligent Construction and Optimization Algorithms
15.3 Applications in 5G/6G Systems
15.4 Performance Analysis and Future Directions
Chapter 16: Course Summary and Outlook (2 hours)
16.1 Review of Course Content and Knowledge Structure
16.2 Development Trends in AI-DSP Technology
16.3 Innovation Responsibility and Engineering Ethics
16.4 Future Research Directions and Learning Suggestions
Teaching Schedule:
Week | Course Content | Teaching Method |
1 | Introduction: AI-Empowered New-Generation DSP and VLSI Design | Lecture, Discussion |
2 | Core Fundamentals and AI Tool Preparation | Lecture, Discussion |
3 | Review of Baseband Signal Processing Algorithms | Lecture, Discussion |
4 | AI-Assisted Communication I: Intelligent Signal Detection and Equalization | Lecture, Discussion |
5 | AI-Assisted Communication II: Intelligent Channel Coding/Decoding | Lecture, Discussion |
6 | AI-Assisted Design and Optimization I: Intelligent Evolutionary Algorithms | Lecture, Discussion |
7 | AI-Assisted Design and Optimization II: Intelligent Automatic Generation of Hardware Circuits | Lecture, Discussion |
8 | AI-Assisted Design and Optimization III: Automatic Low-Bit Quantization and Compression | Lecture, Discussion |
9 | Implementation Architecture of AI-DSP Systems I | Lecture, Discussion |
10 | Implementation Architecture of AI-DSP Systems II | Lecture, Discussion |
11 | AI-Assisted Design and Optimization IV: Automatic Evaluation and Performance Prediction | Lecture, Discussion |
12 | In-Depth Case Study: End-to-End AI Communication Baseband Design | Lecture, Discussion |
13 | System-Level Co-Optimization and Verification | Lecture, Discussion |
14 | Frontier Topics I: Automatic Search for Optimal DSP Hardware Architecture | Lecture, Discussion |
15 | Frontier Topics II: Intelligent Construction Algorithms for Polar Codes | Lecture, Discussion |
16 | Course Summary and Outlook | Lecture, Discussion |
17 | ||
18 |
Note: 1.Above one, two, and three items are used as teaching Syllabus in Chinese and announced on the Chinese website of Graduate School. The four and five items are preserved in Graduate School.
2. Course terms: Spring, Autumn , and Spring-Autumn term.
3. The teaching languages for courses: Chinese, English or Chinese-English.
4. Applicable range of discipline: public, first-class discipline, second-class discipline, and third-class discipline.
5. Practice includes: experiment, investigation, research report, etc.
6. Teaching methods: lecture, seminar, practice, etc.
7. Examination for degree courses must be in paper.
8. Teaching material websites are those which have already been announced.
9. Brief introduction of chief lecturer should include: personal information (date of birth, gender, degree achieved, professional title), research direction, teaching and research achievements. (within 100-500 words)
Brief Introduction of Chief lecturer:
Chuan Zhang: Professor and Ph.D. supervisor at the School of Information Science and Engineering, Southeast University; Young Chief Professor of Southeast University; Co-PI at Purple Mountain Laboratories; Chief Scientist of National Major Science and Technology Projects on Mobile Information Networks. He leads the Lab of Efficient Architectures for Digital-communication and Signal-processing (LEADS) at Southeast University. His research focuses on algorithms, chips, and toolchains for AI-driven communication computing, including AI baseband algorithms and chips, automated baseband chip generation EDA systems, 2D spatiotemporal channel coding/decoding, cell-free network architectures, high-computing-power network-level AI chips, integrated communication-sensing-intelligent unmanned systems, and automated low-bit quantization for RF front-ends.
Lecturer Information (include chief lecturer)
Lecturer | Discipline (major) | Office Phone Number | Home Phone Number | Mobile Phone Number | Address | Postcode | |
Chuan Zhang | Communication and Information Systems | 无 | 无 | chzhang@seu.edu.cn | B1 Building, Jiangning Wireless Valley, Nanjing | 211100 | |
Xiaosi Tan | Communication and Information Systems | 无 | 无 | tanxiaosi@seu.edu.cn | B1 Building, Jiangning Wireless Valley, Nanjing | 211100 | |
Huayi Zhou | Communication and Information Systems | 无 | 无 | huayizhou@seu.edu.cn | B1 Building, Jiangning Wireless Valley, Nanjing | 211100 |